Estudio Ab-Initio de propiedades electrónicas y estructurales de nanopartículas de SnO2 bajo presión

El óxido de estaño (SnO2) tiene importantes aplicaciones, entre ellas como material de elección en el desarrollo de sensores de gases. Cuando el tamaño de partícula (NP) se reduce a la nanoescala, se observa un apreciable incremento en la eficiencia de dichos sensores, mejorando la sensibilidad y di...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ponce Altamirano, Claudio Ariel, Caravaca, María de los Ángeles, Casali, Ricardo Antonio
Formato: Artículo
Lenguaje:Español
Publicado: Universidade Federal do Rio de Janeiro 2023
Materias:
Acceso en línea:http://repositorio.unne.edu.ar/handle/123456789/51941
Aporte de:
Descripción
Sumario:El óxido de estaño (SnO2) tiene importantes aplicaciones, entre ellas como material de elección en el desarrollo de sensores de gases. Cuando el tamaño de partícula (NP) se reduce a la nanoescala, se observa un apreciable incremento en la eficiencia de dichos sensores, mejorando la sensibilidad y disminuyendo su temperatura de trabajo. Por este motivo, es esencial investigar su comportamiento a escala nanométrica. A partir de cálculos ab-initio, se determinaron las energías totales y de formación de superficie de nanopartículas de SnO2 con diferentes concentraciones y tamaño alrededor de 2.5 nm. El análisis muestra que, en el rango de presiones externas aplicadas de 0 a 10 GPa, la estabilidad estructural de las nanopartículas aumenta con el incremento de la concentración. Desde el estudio de los diagramas de desplazamientos atómicos fue posible determinar una región denominada núcleo cristalino y una capa distorsionada en la NP. Teniendo en cuenta la importancia para la detección del tamaño de las NP mediante difracción de rayos-X (DRX), se halló el tamaño del núcleo cristalino a P= 0 GPa, los cuales midieron 1.46 nm para concentraciones 1.9, 2.0 y 2.2 respectivamente. Este núcleo no fue visualizado para presiones de 5 y 10 GPa, y sus dimensiones fueron confirmadas mediante la observación de las densidades de estados electrónicas (DOS) de diferentes regiones en cada NP.