Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of project...
Autores principales: | , |
---|---|
Publicado: |
2013
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00129593_v46_n4_p549_Doandrea http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
Aporte de: |
id |
paper:paper_00129593_v46_n4_p549_Doandrea |
---|---|
record_format |
dspace |
spelling |
paper:paper_00129593_v46_n4_p549_Doandrea2023-06-08T14:35:36Z Heights of varieties in multiprojective spaces and arithmetic nullstellensätze Krick, Teresa Elena Genoveva Sombra, Martín We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz. © 2013 Sociét. Mathématique de France. Tous droits réservé s. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sombra, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2013 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00129593_v46_n4_p549_Doandrea http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of projective spaces and extends to the arithmetic setting constructions and results due to Jelonek. A key role is played by the notion of canonical mixed height of a multiprojective variety. We study this notion from the point of view of resultant theory and establish some of its basic properties, including its behavior with respect to intersections, projections and products. We obtain analogous results for the function field case, including a parametric Nullstellensatz. © 2013 Sociét. Mathématique de France. Tous droits réservé s. |
author |
Krick, Teresa Elena Genoveva Sombra, Martín |
spellingShingle |
Krick, Teresa Elena Genoveva Sombra, Martín Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
author_facet |
Krick, Teresa Elena Genoveva Sombra, Martín |
author_sort |
Krick, Teresa Elena Genoveva |
title |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_short |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_full |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_fullStr |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_full_unstemmed |
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
title_sort |
heights of varieties in multiprojective spaces and arithmetic nullstellensätze |
publishDate |
2013 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00129593_v46_n4_p549_Doandrea http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
work_keys_str_mv |
AT krickteresaelenagenoveva heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze AT sombramartin heightsofvarietiesinmultiprojectivespacesandarithmeticnullstellensatze |
_version_ |
1768544484988026880 |