Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
We present bounds for the degree and the height of the polynomials arising in some problems in effective algebraic geometry including the implicitization of rational maps and the effective Nullstellensatz over a variety. Our treatment is based on arithmetic intersection theory in products of project...
Autores principales: | Krick, Teresa Elena Genoveva, Sombra, Martín |
---|---|
Publicado: |
2013
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00129593_v46_n4_p549_Doandrea http://hdl.handle.net/20.500.12110/paper_00129593_v46_n4_p549_Doandrea |
Aporte de: |
Ejemplares similares
-
Heights of varieties in multiprojective spaces and arithmetic nullstellensätze
por: Dõandrea, C., et al. -
On the intrinsic complexity of the arithmetic Nullstellensatz
por: Hägele, K., et al.
Publicado: (2000) -
On intrinsic bounds in the Nullstellensatz
por: Krick, Teresa Elena Genoveva, et al.
Publicado: (1997) -
A Sparse Effective Nullstellensatz
por: Sombra, Martín
Publicado: (1999) -
On intrinsic bounds in the Nullstellensatz
por: Krick, T., et al.