Almost sure-sign convergence of Hardy-type Dirichlet series

Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study...

Descripción completa

Detalles Bibliográficos
Publicado: 2018
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217670_v135_n1_p225_Carando
http://hdl.handle.net/20.500.12110/paper_00217670_v135_n1_p225_Carando
Aporte de:
id paper:paper_00217670_v135_n1_p225_Carando
record_format dspace
spelling paper:paper_00217670_v135_n1_p225_Carando2023-06-08T14:42:04Z Almost sure-sign convergence of Hardy-type Dirichlet series Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. © 2018, Hebrew University Magnes Press. 2018 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217670_v135_n1_p225_Carando http://hdl.handle.net/20.500.12110/paper_00217670_v135_n1_p225_Carando
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Hartman proved in 1939 that the width of the largest possible strip in the complex plane on which a Dirichlet series ∑ nann− s is uniformly a.s.- sign convergent (i.e., ∑ nεnann− s converges uniformly for almost all sequences of signs εn = ±1) but does not convergent absolutely, equals 1/2. We study this result from a more modern point of view within the framework of so-called Hardytype Dirichlet series with values in a Banach space. © 2018, Hebrew University Magnes Press.
title Almost sure-sign convergence of Hardy-type Dirichlet series
spellingShingle Almost sure-sign convergence of Hardy-type Dirichlet series
title_short Almost sure-sign convergence of Hardy-type Dirichlet series
title_full Almost sure-sign convergence of Hardy-type Dirichlet series
title_fullStr Almost sure-sign convergence of Hardy-type Dirichlet series
title_full_unstemmed Almost sure-sign convergence of Hardy-type Dirichlet series
title_sort almost sure-sign convergence of hardy-type dirichlet series
publishDate 2018
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00217670_v135_n1_p225_Carando
http://hdl.handle.net/20.500.12110/paper_00217670_v135_n1_p225_Carando
_version_ 1768545268294221824