Hochschild homology and cohomology of down–up algebras

We present a detailed computation of the cyclic and the Hochschild homology and cohomology of generic and 3-Calabi–Yau homogeneous down–up algebras. This family was defined by Benkart and Roby in [3] in their study of differential posets. Our calculations are completely explicit, by making use of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2018
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00218693_v498_n_p102_Chouhy
http://hdl.handle.net/20.500.12110/paper_00218693_v498_n_p102_Chouhy
Aporte de:
Descripción
Sumario:We present a detailed computation of the cyclic and the Hochschild homology and cohomology of generic and 3-Calabi–Yau homogeneous down–up algebras. This family was defined by Benkart and Roby in [3] in their study of differential posets. Our calculations are completely explicit, by making use of the Koszul bimodule resolution and some arguments similar to those used in [13] to compute the Hochschild cohomology of Yang–Mills algebras. © 2017 Elsevier Inc.