Solutions to a stationary nonlinear Black-Scholes type equation
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, w...
Autores principales: | Amster, Pablo Gustavo, Averbuj, Corina Gabriela, Mariani, María Cristina |
---|---|
Publicado: |
2002
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v276_n1_p231_Amster http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
Aporte de: |
Ejemplares similares
-
Solutions to a stationary nonlinear Black-Scholes type equation
por: Amster, P., et al.
Publicado: (2002) -
Solutions to a stationary nonlinear Black-Scholes type equation
por: Amster, P., et al.
Publicado: (2002) -
Solutions to a stationary nonlinear Black-Scholes type equation
por: Amster, P., et al. -
Stationary solutions for two nonlinear Black-Scholes type equations
por: Amster, P., et al. -
Stationary solutions for two nonlinear Black-Scholes type equations
Publicado: (2003)