Solutions to a stationary nonlinear Black-Scholes type equation
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, w...
Autores principales: | , , |
---|---|
Publicado: |
2002
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v276_n1_p231_Amster http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
Aporte de: |
id |
paper:paper_0022247X_v276_n1_p231_Amster |
---|---|
record_format |
dspace |
spelling |
paper:paper_0022247X_v276_n1_p231_Amster2023-06-08T14:47:48Z Solutions to a stationary nonlinear Black-Scholes type equation Amster, Pablo Gustavo Averbuj, Corina Gabriela Mariani, María Cristina We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, we construct a solution by an iterative procedure. © 2002 Elsevier Science (USA). All rights reserved. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Averbuj, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v276_n1_p231_Amster http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, we construct a solution by an iterative procedure. © 2002 Elsevier Science (USA). All rights reserved. |
author |
Amster, Pablo Gustavo Averbuj, Corina Gabriela Mariani, María Cristina |
spellingShingle |
Amster, Pablo Gustavo Averbuj, Corina Gabriela Mariani, María Cristina Solutions to a stationary nonlinear Black-Scholes type equation |
author_facet |
Amster, Pablo Gustavo Averbuj, Corina Gabriela Mariani, María Cristina |
author_sort |
Amster, Pablo Gustavo |
title |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_short |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_full |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_fullStr |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_full_unstemmed |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_sort |
solutions to a stationary nonlinear black-scholes type equation |
publishDate |
2002 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v276_n1_p231_Amster http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
work_keys_str_mv |
AT amsterpablogustavo solutionstoastationarynonlinearblackscholestypeequation AT averbujcorinagabriela solutionstoastationarynonlinearblackscholestypeequation AT marianimariacristina solutionstoastationarynonlinearblackscholestypeequation |
_version_ |
1768546054516506624 |