On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
We show that, for certain non-smooth bounded domains Ω⊂Rn, the real interpolation space (Lp(Ω),W1,p(Ω))s,p is the subspace W˜s,p(Ω)⊂Lp(Ω) induced by the restricted fractional seminorm |f|W˜s,p(Ω)=(∫Ω∫|x−y|<%[Formula presented]dydx)[Formula presented]. © 2018 Elsevier Inc.
Guardado en:
Publicado: |
2019
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022247X_v470_n1_p91_Drelichman http://hdl.handle.net/20.500.12110/paper_0022247X_v470_n1_p91_Drelichman |
Aporte de: |
Ejemplares similares
-
On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
por: Drelichman, I., et al. -
Improved Poincaré inequalities in fractional Sobolev spaces
Publicado: (2018) -
Improved Poincaré inequalities in fractional Sobolev spaces
por: Drelichman, I., et al. -
Continuity results with respect to domain perturbation for the fractional p-Laplacian
Publicado: (2018) -
Continuity results with respect to domain perturbation for the fractional p-Laplacian
por: Baroncini, C., et al.