Sharp bounds for the number of roots of univariate fewnomials
Let K be a field and t≥0. Denote by Bm(t,K) the supremum of the number of roots in K*, counted with multiplicities, that can have a non-zero polynomial in K[x] with at most t+1 monomial terms. We prove, using an unified approach based on Vandermonde determinants, that Bm(t,L)≤t2Bm(t,K) for any local...
Guardado en:
Autores principales: | Avendaño, Martín, Krick, Teresa Elena Genoveva |
---|---|
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0022314X_v131_n7_p1209_Avendano http://hdl.handle.net/20.500.12110/paper_0022314X_v131_n7_p1209_Avendano |
Aporte de: |
Ejemplares similares
-
Sharp bounds for the number of roots of univariate fewnomials
por: Avendaño, M., et al. -
Multivariate subresultants in roots
por: D'Andrea, Carlos Antonio, et al.
Publicado: (2006) -
Multivariate subresultants in roots
por: D'Andrea, C., et al.
Publicado: (2006) -
Multivariate subresultants in roots
por: D'Andrea, C., et al. -
Multivariate subresultants in roots
por: D'Andrea, C., et al.
Publicado: (2006)