Combinatorics of binomial primary decomposition
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely th...
Autor principal: | |
---|---|
Publicado: |
2010
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255874_v264_n4_p745_Dickenstein http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein |
Aporte de: |
id |
paper:paper_00255874_v264_n4_p745_Dickenstein |
---|---|
record_format |
dspace |
spelling |
paper:paper_00255874_v264_n4_p745_Dickenstein2023-06-08T14:53:24Z Combinatorics of binomial primary decomposition Dickenstein, Alicia Marcela An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables. © Springer-Verlag 2009. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2010 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255874_v264_n4_p745_Dickenstein http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables. © Springer-Verlag 2009. |
author |
Dickenstein, Alicia Marcela |
spellingShingle |
Dickenstein, Alicia Marcela Combinatorics of binomial primary decomposition |
author_facet |
Dickenstein, Alicia Marcela |
author_sort |
Dickenstein, Alicia Marcela |
title |
Combinatorics of binomial primary decomposition |
title_short |
Combinatorics of binomial primary decomposition |
title_full |
Combinatorics of binomial primary decomposition |
title_fullStr |
Combinatorics of binomial primary decomposition |
title_full_unstemmed |
Combinatorics of binomial primary decomposition |
title_sort |
combinatorics of binomial primary decomposition |
publishDate |
2010 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00255874_v264_n4_p745_Dickenstein http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein |
work_keys_str_mv |
AT dickensteinaliciamarcela combinatoricsofbinomialprimarydecomposition |
_version_ |
1768544809500278784 |