Automatic solar flare detection using neural network techniques
We present a new method for automatic detection of flare events from images in the optical range. The method uses neural networks for pattern recognition and is conceived to be applied to full-disk Hα images. Images are analyzed in real time, which allows for the design of automatic patrol processes...
Autores principales: | , , , , |
---|---|
Publicado: |
2002
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v206_n2_p347_FernandezBorda http://hdl.handle.net/20.500.12110/paper_00380938_v206_n2_p347_FernandezBorda |
Aporte de: |
id |
paper:paper_00380938_v206_n2_p347_FernandezBorda |
---|---|
record_format |
dspace |
spelling |
paper:paper_00380938_v206_n2_p347_FernandezBorda2023-06-08T15:02:36Z Automatic solar flare detection using neural network techniques Fernández Borda, Roberto Armando Mininni, Pablo Daniel Mandrini, Cristina Hemilse Gomez, Daniel Osvaldo Rovira, Marta Graciela We present a new method for automatic detection of flare events from images in the optical range. The method uses neural networks for pattern recognition and is conceived to be applied to full-disk Hα images. Images are analyzed in real time, which allows for the design of automatic patrol processes able to detect and record flare events with the best time resolution available without human assistance. We use a neural network consisting of two layers, a hidden layer of nonlinear neurodes and an output layer of one linear neurode. The network was trained using a back-propagation algorithm and a set of full-disk solar images obtained by HASTA (Hα Solar Telescope for Argentina), which is located at the Estación de Altura Ulrico Cesco of OAFA (Observatorio Astronómico Félix Aguilar), El Leoncito, San Juan, Argentina. This method is appropriate for the detection of solar flares in the complete optical classification, being portable to any Hα instrument and providing unique criteria for flare detection independent of the observer. Fil:Fernandez Borda, R.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mininni, P.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mandrini, C.H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gómez, D.O. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rovira, M.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2002 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v206_n2_p347_FernandezBorda http://hdl.handle.net/20.500.12110/paper_00380938_v206_n2_p347_FernandezBorda |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We present a new method for automatic detection of flare events from images in the optical range. The method uses neural networks for pattern recognition and is conceived to be applied to full-disk Hα images. Images are analyzed in real time, which allows for the design of automatic patrol processes able to detect and record flare events with the best time resolution available without human assistance. We use a neural network consisting of two layers, a hidden layer of nonlinear neurodes and an output layer of one linear neurode. The network was trained using a back-propagation algorithm and a set of full-disk solar images obtained by HASTA (Hα Solar Telescope for Argentina), which is located at the Estación de Altura Ulrico Cesco of OAFA (Observatorio Astronómico Félix Aguilar), El Leoncito, San Juan, Argentina. This method is appropriate for the detection of solar flares in the complete optical classification, being portable to any Hα instrument and providing unique criteria for flare detection independent of the observer. |
author |
Fernández Borda, Roberto Armando Mininni, Pablo Daniel Mandrini, Cristina Hemilse Gomez, Daniel Osvaldo Rovira, Marta Graciela |
spellingShingle |
Fernández Borda, Roberto Armando Mininni, Pablo Daniel Mandrini, Cristina Hemilse Gomez, Daniel Osvaldo Rovira, Marta Graciela Automatic solar flare detection using neural network techniques |
author_facet |
Fernández Borda, Roberto Armando Mininni, Pablo Daniel Mandrini, Cristina Hemilse Gomez, Daniel Osvaldo Rovira, Marta Graciela |
author_sort |
Fernández Borda, Roberto Armando |
title |
Automatic solar flare detection using neural network techniques |
title_short |
Automatic solar flare detection using neural network techniques |
title_full |
Automatic solar flare detection using neural network techniques |
title_fullStr |
Automatic solar flare detection using neural network techniques |
title_full_unstemmed |
Automatic solar flare detection using neural network techniques |
title_sort |
automatic solar flare detection using neural network techniques |
publishDate |
2002 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00380938_v206_n2_p347_FernandezBorda http://hdl.handle.net/20.500.12110/paper_00380938_v206_n2_p347_FernandezBorda |
work_keys_str_mv |
AT fernandezbordarobertoarmando automaticsolarflaredetectionusingneuralnetworktechniques AT mininnipablodaniel automaticsolarflaredetectionusingneuralnetworktechniques AT mandrinicristinahemilse automaticsolarflaredetectionusingneuralnetworktechniques AT gomezdanielosvaldo automaticsolarflaredetectionusingneuralnetworktechniques AT roviramartagraciela automaticsolarflaredetectionusingneuralnetworktechniques |
_version_ |
1768544401055809536 |