Ergodic properties of linear operators
Let T be a bounded linear operator on a Banach space X. We prove some properties of X1 = {z ( X: limnn∑k=1 Tkz/k exists} and we construct an operator T such that limnTn/n = 0, but (I - T)X is not included in X1.
Guardado en:
Autor principal: | Becker, María Elena |
---|---|
Publicado: |
2011
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00416932_v52_n1_p23_Becker http://hdl.handle.net/20.500.12110/paper_00416932_v52_n1_p23_Becker |
Aporte de: |
Ejemplares similares
-
Ergodic properties of linear operators
por: Becker, M.E. -
A condition equivalent to uniform ergodicity
por: Becker, M.E. -
Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing
Publicado: (2009) -
Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing
por: Castagnino, M., et al. -
Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing
por: Castagnino, Mario Alberto
Publicado: (2009)