Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined...
Publicado: |
2000
|
---|---|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00418994_v103_n_p51_Keilhauer http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer |
Aporte de: |
id |
paper:paper_00418994_v103_n_p51_Keilhauer |
---|---|
record_format |
dspace |
spelling |
paper:paper_00418994_v103_n_p51_Keilhauer2023-06-08T15:04:49Z Tensor fields of type (0,2) on linear frame bundles and cotangent bundles To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés. 2000 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00418994_v103_n_p51_Keilhauer http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés. |
title |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
spellingShingle |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_short |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_full |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_fullStr |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_full_unstemmed |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_sort |
tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
publishDate |
2000 |
url |
https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00418994_v103_n_p51_Keilhauer http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer |
_version_ |
1768546388998619136 |