Tensor fields of type (0,2) on linear frame bundles and cotangent bundles

To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined...

Descripción completa

Detalles Bibliográficos
Publicado: 2000
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00418994_v103_n_p51_Keilhauer
http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer
Aporte de:
id paper:paper_00418994_v103_n_p51_Keilhauer
record_format dspace
spelling paper:paper_00418994_v103_n_p51_Keilhauer2023-06-08T15:04:49Z Tensor fields of type (0,2) on linear frame bundles and cotangent bundles To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés. 2000 https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00418994_v103_n_p51_Keilhauer http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.
title Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
spellingShingle Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_short Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_full Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_fullStr Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_full_unstemmed Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_sort tensor fields of type (0,2) on linear frame bundles and cotangent bundles
publishDate 2000
url https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00418994_v103_n_p51_Keilhauer
http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer
_version_ 1768546388998619136