A robust predictive approach for canonical correlation analysis
Canonical correlation analysis (CCA) is a dimension-reduction technique in which two random vectors from high dimensional spaces are reduced to a new pair of low dimensional vectors after applying linear transformations to each of them, retaining as much information as possible. The components of th...
Publicado: |
2015
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0047259X_v133_n_p356_Adrover http://hdl.handle.net/20.500.12110/paper_0047259X_v133_n_p356_Adrover |
Aporte de: |
Ejemplares similares
-
A robust predictive approach for canonical correlation analysis
por: Adrover, J.G., et al. -
Robust sieve estimators for functional canonical correlation analysis
Publicado: (2019) -
Robust sieve estimators for functional canonical correlation analysis
por: Alvarez, A., et al. -
Canonical correlation analysis : uses and interpretation /
por: Thompson, Bruce, 1951-
Publicado: (1984) -
Robust sieve estimators for functional canonical correlation analysis
por: Álvarez, Agustín, et al.
Publicado: (2024)