Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
This paper is devoted to the justification of an asymptotic model for quasisteady three-dimensional spherical flames proposed by G. Joulin [17]. The paper [17] derives, by means of a three-scale matched asymptotics, starting from the classical thermo-diffusive model with high activation energies, an...
Guardado en:
Autores principales: | Lederman, Claudia Beatriz, Wolanski, Noemi Irene |
---|---|
Publicado: |
2004
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03733114_v183_n2_p173_Lederman http://hdl.handle.net/20.500.12110/paper_03733114_v183_n2_p173_Lederman |
Aporte de: |
Ejemplares similares
-
Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
por: Lederman, C., et al. -
Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
por: Lederman, C., et al. -
Mathematical justification of a nonlinear integro-differential equation for the propagation of spherical flames
Publicado: (2002) -
Hydrodynamics and nonlinear instabilities /
Publicado: (1998) -
Nonlinear ordinary differential equations problems and solutions : a sourcebook for scientists and engineers /
por: Jordan, D. W. (Dominic William)
Publicado: (2007)