Quantum key distribution with untrusted detectors

Side-channel attacks currently constitute the main challenge for quantum key distribution (QKD) to bridge theory with practice. So far two main approaches have been introduced to address this problem, (full) device-independent QKD and measurement-device-independent QKD. Here we present a third solut...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2015
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v92_n2_p_Gonzalez
http://hdl.handle.net/20.500.12110/paper_10502947_v92_n2_p_Gonzalez
Aporte de:
Descripción
Sumario:Side-channel attacks currently constitute the main challenge for quantum key distribution (QKD) to bridge theory with practice. So far two main approaches have been introduced to address this problem, (full) device-independent QKD and measurement-device-independent QKD. Here we present a third solution that might exceed the performance and practicality of the previous two in circumventing detector side-channel attacks, which arguably is the most hazardous part of QKD implementations. Our proposal has, however, one main requirement: the legitimate users of the system need to ensure that their labs do not leak any unwanted information to the outside. The security in the low-loss regime is guaranteed, while in the high-loss regime we already prove its robustness against some eavesdropping strategies. © 2015 American Physical Society.