Optimal shift invariant spaces and their Parseval frame generators
Given a set of functions F = {f1, ..., fm} ⊂ L2 (Rd), we study the problem of finding the shift-invariant space V with n generators {φ1, ..., φn} that is "closest" to the functions of F in the sense thatV = under(arg min, V′ ∈ Vn) underover(∑, i = 1, m) wi {norm of matrix} fi - PV′ fi {nor...
Autores principales: | Cabrelli, Carlos Alberto, Molter, Ursula Maria |
---|---|
Publicado: |
2007
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10635203_v23_n2_p273_Aldroubi http://hdl.handle.net/20.500.12110/paper_10635203_v23_n2_p273_Aldroubi |
Aporte de: |
Ejemplares similares
-
Optimal shift invariant spaces and their Parseval frame generators
por: Aldroubi, A., et al.
Publicado: (2007) -
Optimal shift invariant spaces and their Parseval frame generators
por: Aldroubi, A., et al.
Publicado: (2007) -
Optimal shift invariant spaces and their Parseval frame generators
por: Aldroubi, A., et al. -
Invariance of a shift-invariant space
por: Cabrelli, Carlos Alberto, et al.
Publicado: (2010) -
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces
por: Benac, María José, et al.
Publicado: (2017)