Isolation and simplicity for the first eigenvalue of the p-laplacian with a nonlinear boundary condition
We prove the simplicity and isolation of the first eigenvalue for the problem Δ pu = |u| p-2u in a bounded smooth domain Ω 〈 ℝ N, with a nonlinear boundary condition given by |∇u| p-2∂u/∂v = λ |u| p-2u on the boundary of the domain. Copyright © 2002 Hindawi Publishing Corporation.
Autores principales: | Martínez, Sandra Rita, Rossi, Julio Daniel |
---|---|
Publicado: |
2002
|
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10853375_v7_n5_p287_Martinez http://hdl.handle.net/20.500.12110/paper_10853375_v7_n5_p287_Martinez |
Aporte de: |
Ejemplares similares
-
Isolation and simplicity for the first eigenvalue of the p-laplacian with a nonlinear boundary condition
por: Martínez, S., et al.
Publicado: (2002) -
Isolation and simplicity for the first eigenvalue of the p-laplacian with a nonlinear boundary condition
por: Martínez, S., et al.
Publicado: (2002) -
Isolation and simplicity for the first eigenvalue of the p-laplacian with a nonlinear boundary condition
por: Martínez, S., et al. -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, Julio Daniel
Publicado: (2016) -
The limit as p → + ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
por: Rossi, Julio Daniel
Publicado: (2015)