Modeling of disorder effects and optical extinction in three-dimensional photonic crystals

We present three different methods for the modeling of disorder effects in three-dimensional photonic crystals. In order to reproduce experimental results, we apply a method based on a statistical distribution of sphere sizes and vacancy density in a colloidal crystal slab. The other two methods con...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dorado, Luis Antonio, Depine, Ricardo Angel
Publicado: 2009
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10980121_v79_n4_p_Dorado
http://hdl.handle.net/20.500.12110/paper_10980121_v79_n4_p_Dorado
Aporte de:
Descripción
Sumario:We present three different methods for the modeling of disorder effects in three-dimensional photonic crystals. In order to reproduce experimental results, we apply a method based on a statistical distribution of sphere sizes and vacancy density in a colloidal crystal slab. The other two methods consist of adding extinction to the theoretical model so energy losses account for the diffuse light scattering produced by imperfections in the crystalline structure, which removes energy from coherently scattered waves. Although we exemplify the case of synthetic opals, our analysis also applies to other kinds of photonic crystals. © 2009 The American Physical Society.