Orbital stability of numerical periodic nonlinear Schrödinger equation
This work is devoted to the study of the system that arises by discretization of the periodic nonlinear Schrödinger equation in dimension one. We study the existence of the discrete ground states for this system and their stability property when the potential parameter σ is small enough: i.e., if th...
Guardado en:
Publicado: |
2008
|
---|---|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_15396746_v6_n1_p149_Borgna http://hdl.handle.net/20.500.12110/paper_15396746_v6_n1_p149_Borgna |
Aporte de: |
Ejemplares similares
-
Orbital stability of numerical periodic nonlinear Schrödinger equation
por: Borgna, J.P., et al. -
Stability of periodic nonlinear Schrödinger equation
por: Borgna, Juan Pablo
Publicado: (2008) -
Stability of periodic nonlinear Schrödinger equation
por: Borgna, J.P. -
Analytical properties and numerical solutions of the derivative nonlinear Schrödinger equation
Publicado: (1988) -
Analytical properties and numerical solutions of the derivative nonlinear Schrödinger equation
por: Dawson, S.P.