Dynamical Casimir effect in a double tunable superconducting circuit

We present an analytical and numerical analysis of the particle creation in a cavity ended with two superconducting quantum interference devices, both subjected to time-dependent magnetic fields. In the linear and lossless regime, the problem can be modeled by a free quantum field in 1+1 dimensions,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Publicado: 2018
Materias:
Acceso en línea:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_24699926_v98_n2_p_Lombardo
http://hdl.handle.net/20.500.12110/paper_24699926_v98_n2_p_Lombardo
Aporte de:
Descripción
Sumario:We present an analytical and numerical analysis of the particle creation in a cavity ended with two superconducting quantum interference devices, both subjected to time-dependent magnetic fields. In the linear and lossless regime, the problem can be modeled by a free quantum field in 1+1 dimensions, in the presence of boundary conditions that involve a time-dependent linear combination of the field and its spatial and time derivatives. We consider a situation in which the boundary conditions at both ends are periodic functions of time, focusing on interesting features as the dependence of the rate of particle creation with the characteristics of the spectrum of the cavity, the conditions needed for parametric resonance, and interference phenomena due to simultaneous time dependence of the boundary conditions. We point out several concrete effects that could be tested experimentally. © 2018 American Physical Society.