Imaging of calcium dynamics in pollen tube cytoplasm
Cytoplasmic calcium [(Ca2+)cyt] is a central component of cellular signal transduction pathways. In plants, many external and internal stimuli transiently elevate (Ca2+)cyt, initiating downstream responses that control different features of plant development. In pollen tubes the establishment of an...
Guardado en:
Autor principal: | |
---|---|
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_97814939_v_n_p49_Barberini http://hdl.handle.net/20.500.12110/paper_97814939_v_n_p49_Barberini |
Aporte de: |
Sumario: | Cytoplasmic calcium [(Ca2+)cyt] is a central component of cellular signal transduction pathways. In plants, many external and internal stimuli transiently elevate (Ca2+)cyt, initiating downstream responses that control different features of plant development. In pollen tubes the establishment of an oscillatory gradient of calcium at the tip is essential for polarized growth. Disruption of the cytosolic Ca2+ gradient by chelators or channel blockers inhibits pollen tube growth. To quantify the physiological role of (Ca2+)cyt in cellular systems, genetically encoded Ca2+ indicators such as Yellow Cameleons (YCs) have been developed. The Cameleons are based on a fluorescence resonance energy transfer (FRET) process. Here, we describe a method for imaging cytoplasmic Ca2+ dynamics in growing pollen tubes that express the fluorescent calcium indicator Yellow Cameleon 3.6 (YC 3.6), using laser-scanning confocal microscopy. © Springer Science+Business Media New York 2015. All rights are reserved. |
---|