A negative answer to a question of bass

We address Bass' question, on whether Kn(R) = Kn(R[t]) implies Kn(R) = Kn(R[t1, t2]). In a companion paper, we establish a positive answer to this question when R is of finite type over a field of infinite transcendence degree over the rationals. Here we provide an example of an isolated surfac...

Descripción completa

Detalles Bibliográficos
Autores principales: CortiNas, G., Haesemeyer, C., Walker, M.E., Weibel, C.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 2011
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00029939_v139_n4_p1187_CortiNas
Aporte de:
id paperaa:paper_00029939_v139_n4_p1187_CortiNas
record_format dspace
spelling paperaa:paper_00029939_v139_n4_p1187_CortiNas2023-06-12T16:39:44Z A negative answer to a question of bass Proc. Am. Math. Soc. 2011;139(4):1187-1200 CortiNas, G. Haesemeyer, C. Walker, M.E. Weibel, C. We address Bass' question, on whether Kn(R) = Kn(R[t]) implies Kn(R) = Kn(R[t1, t2]). In a companion paper, we establish a positive answer to this question when R is of finite type over a field of infinite transcendence degree over the rationals. Here we provide an example of an isolated surface singularity over a number field for which the answer the Bass' question is "no" when n = 0. © c 2010 American Mathematical Society. Fil:CortiNas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v139_n4_p1187_CortiNas
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
description We address Bass' question, on whether Kn(R) = Kn(R[t]) implies Kn(R) = Kn(R[t1, t2]). In a companion paper, we establish a positive answer to this question when R is of finite type over a field of infinite transcendence degree over the rationals. Here we provide an example of an isolated surface singularity over a number field for which the answer the Bass' question is "no" when n = 0. © c 2010 American Mathematical Society.
format Artículo
Artículo
publishedVersion
author CortiNas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.
spellingShingle CortiNas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.
A negative answer to a question of bass
author_facet CortiNas, G.
Haesemeyer, C.
Walker, M.E.
Weibel, C.
author_sort CortiNas, G.
title A negative answer to a question of bass
title_short A negative answer to a question of bass
title_full A negative answer to a question of bass
title_fullStr A negative answer to a question of bass
title_full_unstemmed A negative answer to a question of bass
title_sort negative answer to a question of bass
publishDate 2011
url http://hdl.handle.net/20.500.12110/paper_00029939_v139_n4_p1187_CortiNas
work_keys_str_mv AT cortinasg anegativeanswertoaquestionofbass
AT haesemeyerc anegativeanswertoaquestionofbass
AT walkerme anegativeanswertoaquestionofbass
AT weibelc anegativeanswertoaquestionofbass
AT cortinasg negativeanswertoaquestionofbass
AT haesemeyerc negativeanswertoaquestionofbass
AT walkerme negativeanswertoaquestionofbass
AT weibelc negativeanswertoaquestionofbass
_version_ 1769810202291339264