A negative answer to a question of bass
We address Bass' question, on whether Kn(R) = Kn(R[t]) implies Kn(R) = Kn(R[t1, t2]). In a companion paper, we establish a positive answer to this question when R is of finite type over a field of infinite transcendence degree over the rationals. Here we provide an example of an isolated surfac...
Autores principales: | , , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2011
|
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v139_n4_p1187_CortiNas |
Aporte de: |
id |
paperaa:paper_00029939_v139_n4_p1187_CortiNas |
---|---|
record_format |
dspace |
spelling |
paperaa:paper_00029939_v139_n4_p1187_CortiNas2023-06-12T16:39:44Z A negative answer to a question of bass Proc. Am. Math. Soc. 2011;139(4):1187-1200 CortiNas, G. Haesemeyer, C. Walker, M.E. Weibel, C. We address Bass' question, on whether Kn(R) = Kn(R[t]) implies Kn(R) = Kn(R[t1, t2]). In a companion paper, we establish a positive answer to this question when R is of finite type over a field of infinite transcendence degree over the rationals. Here we provide an example of an isolated surface singularity over a number field for which the answer the Bass' question is "no" when n = 0. © c 2010 American Mathematical Society. Fil:CortiNas, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 2011 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00029939_v139_n4_p1187_CortiNas |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
language |
Inglés |
orig_language_str_mv |
eng |
description |
We address Bass' question, on whether Kn(R) = Kn(R[t]) implies Kn(R) = Kn(R[t1, t2]). In a companion paper, we establish a positive answer to this question when R is of finite type over a field of infinite transcendence degree over the rationals. Here we provide an example of an isolated surface singularity over a number field for which the answer the Bass' question is "no" when n = 0. © c 2010 American Mathematical Society. |
format |
Artículo Artículo publishedVersion |
author |
CortiNas, G. Haesemeyer, C. Walker, M.E. Weibel, C. |
spellingShingle |
CortiNas, G. Haesemeyer, C. Walker, M.E. Weibel, C. A negative answer to a question of bass |
author_facet |
CortiNas, G. Haesemeyer, C. Walker, M.E. Weibel, C. |
author_sort |
CortiNas, G. |
title |
A negative answer to a question of bass |
title_short |
A negative answer to a question of bass |
title_full |
A negative answer to a question of bass |
title_fullStr |
A negative answer to a question of bass |
title_full_unstemmed |
A negative answer to a question of bass |
title_sort |
negative answer to a question of bass |
publishDate |
2011 |
url |
http://hdl.handle.net/20.500.12110/paper_00029939_v139_n4_p1187_CortiNas |
work_keys_str_mv |
AT cortinasg anegativeanswertoaquestionofbass AT haesemeyerc anegativeanswertoaquestionofbass AT walkerme anegativeanswertoaquestionofbass AT weibelc anegativeanswertoaquestionofbass AT cortinasg negativeanswertoaquestionofbass AT haesemeyerc negativeanswertoaquestionofbass AT walkerme negativeanswertoaquestionofbass AT weibelc negativeanswertoaquestionofbass |
_version_ |
1769810202291339264 |