The Dixmier Conjecture and the shape of possible counterexamples
We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | Artículo publishedVersion |
Lenguaje: | Inglés |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00218693_v399_n_p581_Guccione |
Aporte de: |
Sumario: | We establish a lower bound for the size of possible counterexamples of the Dixmier Conjecture. We prove that B>. 15, where B is the minimum of the greatest common divisor of the total degrees of P and Q, where (P, Q) runs over the counterexamples of the Dixmier Conjecture. © 2013 Elsevier Inc. |
---|