Factorization of J-expansive meromorphic operator-valued functions

The factorization theorems are a generalization for J-biexpansive meromorphic operator-valued functions on an infinite-dimensional Hilbert space of the theorems on decomposition of J-expansive matrix functions on a finite-dimensional Hilbert space due to A. V. Efimov and V. P. Potapov [Uspekhi Mat....

Descripción completa

Detalles Bibliográficos
Autor principal: Gnavi, G.
Formato: Artículo publishedVersion
Lenguaje:Inglés
Publicado: 1981
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01968858_v2_n1_p13_Gnavi
Aporte de:
id paperaa:paper_01968858_v2_n1_p13_Gnavi
record_format dspace
spelling paperaa:paper_01968858_v2_n1_p13_Gnavi2023-06-12T16:47:07Z Factorization of J-expansive meromorphic operator-valued functions Adv. Appl. Math. 1981;2(1):13-23 Gnavi, G. The factorization theorems are a generalization for J-biexpansive meromorphic operator-valued functions on an infinite-dimensional Hilbert space of the theorems on decomposition of J-expansive matrix functions on a finite-dimensional Hilbert space due to A. V. Efimov and V. P. Potapov [Uspekhi Mat. Nauk 28 (1973), 65-130; Trudy Moskov. Mat. Obšč. 4 (1955), 125-236]. They also generalize theorems on factorization of J-expansive meromorphic operator functions due to Ju. P. Ginzburg [Izv. Vysš. Učebn. Zaved. Matematika 32 (1963), 45-53]. Within the framework of generalized network theory, the results can be applied to the J-biexpansive real operators that characterize a Hilbert port. Application of the extraction procedure to a given real operator leads to its splitting into a product of real factors, corresponding to Hilbert ports of a simpler structure. This can be interpreted as an extension of the classical method of synthesis of passive n-ports by factor decomposition. © 1981. Fil:Gnavi, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. 1981 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/publishedVersion application/pdf eng info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01968858_v2_n1_p13_Gnavi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language Inglés
orig_language_str_mv eng
description The factorization theorems are a generalization for J-biexpansive meromorphic operator-valued functions on an infinite-dimensional Hilbert space of the theorems on decomposition of J-expansive matrix functions on a finite-dimensional Hilbert space due to A. V. Efimov and V. P. Potapov [Uspekhi Mat. Nauk 28 (1973), 65-130; Trudy Moskov. Mat. Obšč. 4 (1955), 125-236]. They also generalize theorems on factorization of J-expansive meromorphic operator functions due to Ju. P. Ginzburg [Izv. Vysš. Učebn. Zaved. Matematika 32 (1963), 45-53]. Within the framework of generalized network theory, the results can be applied to the J-biexpansive real operators that characterize a Hilbert port. Application of the extraction procedure to a given real operator leads to its splitting into a product of real factors, corresponding to Hilbert ports of a simpler structure. This can be interpreted as an extension of the classical method of synthesis of passive n-ports by factor decomposition. © 1981.
format Artículo
Artículo
publishedVersion
author Gnavi, G.
spellingShingle Gnavi, G.
Factorization of J-expansive meromorphic operator-valued functions
author_facet Gnavi, G.
author_sort Gnavi, G.
title Factorization of J-expansive meromorphic operator-valued functions
title_short Factorization of J-expansive meromorphic operator-valued functions
title_full Factorization of J-expansive meromorphic operator-valued functions
title_fullStr Factorization of J-expansive meromorphic operator-valued functions
title_full_unstemmed Factorization of J-expansive meromorphic operator-valued functions
title_sort factorization of j-expansive meromorphic operator-valued functions
publishDate 1981
url http://hdl.handle.net/20.500.12110/paper_01968858_v2_n1_p13_Gnavi
work_keys_str_mv AT gnavig factorizationofjexpansivemeromorphicoperatorvaluedfunctions
_version_ 1769810286304296960