Sobre caracterizaciones estructurales de clases de grafos relacionadas con los grafos perfectos y la propiedad de König

Un grafo es balanceado si su matriz clique no contiene como submatriz ninguna matriz de incidencia arista-vértice de un ciclo impar. Se conoce una caracterización para estos grafos por subgrafos inducidos prohibidos, pero ninguna que sea por subgrafos inducidos prohibidos minimales. En esta tesis pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Safe, Martín Darío
Otros Autores: Bonomo, Flavia
Formato: Tesis doctoral publishedVersion
Lenguaje:Inglés
Publicado: Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales 2011
Materias:
Acceso en línea:https://hdl.handle.net/20.500.12110/tesis_n4969_Safe
Aporte de:
Descripción
Sumario:Un grafo es balanceado si su matriz clique no contiene como submatriz ninguna matriz de incidencia arista-vértice de un ciclo impar. Se conoce una caracterización para estos grafos por subgrafos inducidos prohibidos, pero ninguna que sea por subgrafos inducidos prohibidos minimales. En esta tesis probamos caracterizaciones por subgrafos inducidos prohibidos minimales para los grafos balanceados restringidas a ciertas clases de grafos y mostramos que dentro de algunas de ellas conducen a algoritmos lineales para reconocer el balanceo. Un grafo es clique-perfecto si en cada subgrafo inducido el mínimo número de vértices que intersecan todas las cliques coincide con el máximo número de cliques disjuntas dos a dos. Contrariamente a los grafos perfectos, para estos grafos no se conoce una caracterización por subgrafos inducidos prohibidos ni la complejidad del problema de reconocimiento. En esta tesis caracterizamos los grafos clique-perfectos por subgrafos inducidos prohibidos dentro de dos clases de grafos, lo que implica algoritmos de reconocimiento polinomiales para la clique-perfección dentro de dichas clases. Un grafo tiene la propiedad de Kőnig si el mínimo número de vértices que intersecan todas las aristas iguala al máximo número de aristas que no comparten vértices. En esta tesis caracterizamos estos grafos por subgrafos prohibidos, lo que nos permite también caracterizar los grafos arista-perfectos por arista-subgrafos prohibidos.