Soluciones autosemejantes con tiempo de espera de ecuaciones no lineales de difusión

Las ecuaciones difusivas no lineales admiten soluciones con tiempo de espera (STE), cuyo frente permanece inmóvil durante un intervalo finito de tiempo antes de avanzar. La asintótica de las STE en el entorno del frente, para tiempos próximos al tiempo de espera es autosemejante (AS) de II Especie....

Descripción completa

Detalles Bibliográficos
Autores principales: Gratton, Julio, Vigo, Claudio
Lenguaje:Español
Publicado: 1994
Acceso en línea:https://hdl.handle.net/20.500.12110/afa_v06_n01_p326
Aporte de:
Descripción
Sumario:Las ecuaciones difusivas no lineales admiten soluciones con tiempo de espera (STE), cuyo frente permanece inmóvil durante un intervalo finito de tiempo antes de avanzar. La asintótica de las STE en el entorno del frente, para tiempos próximos al tiempo de espera es autosemejante (AS) de II Especie. Lacey, Ockendon y Tayler (LOT) demostraron la existencia de soluciones de este tipo y dieron prescripciones para construirlas, pero no estudiaron sus propiedades. En este trabajo estudiamos soluciones para flujos viscogravitatorios con simetría plana y encontramos que pertenecen a tres clases, de acuerdo al valor del exponente de autosemejanza δ. El espectro de δ es continuo y abarca todo δ>1. Si 1<δ13/10 las soluciones presentan una estructura consistente en una sucesión infinita de comer shocks (CS) cuyo punto de acumulación es el frente. Si δ>13/10 las soluciones no presentan CS. Sólo las soluciones con CS tienen sentido físico