Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
Using the theory of covering groups of Schur we prove that the two Nichols algebras associated to the conjugacy class of transpositions in S n are equivalent by twist and hence they have the same Hilbert series. These algebras appear in the classification of pointed Hopf algebras and in the study of...
Guardado en:
Autor principal: | Vendramin, L. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v140_n11_p3715_Vendramin |
Aporte de: |
Ejemplares similares
-
Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent
por: Vendramin, Leandro
Publicado: (2012) -
Nichols algebras of group type with many quadratic relations
por: Graña, M., et al.
Publicado: (2011) -
Nichols algebras of group type with many quadratic relations
por: Graña, M., et al. -
Nichols algebras of group type with many quadratic relations
por: Graña, M., et al.
Publicado: (2011) -
Nichols algebras of group type with many quadratic relations
por: Graña, Matías Alejo, et al.
Publicado: (2011)