A two weight inequality for the fractional integral when p = n/α
Let Iα be the fractional integral operator defined as Given a weight w (resp. v), necessary and sufficient conditions are given for the existence of a non trivial weight v (resp. w) such that holds for any ball B such that ||vxB||∞ > 0. © 1984 American Mathematical Society.
Autores principales: | Harboure, E., Macias, R.A., Segovia, C. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00029939_v90_n4_p555_Harboure |
Aporte de: |
Ejemplares similares
-
A two weight inequality for the fractional integral when p = n/α
Publicado: (1984) -
On weighted inequalities for fractional integrals of radial functions
por: De Nápoli, P.L., et al. -
On weighted inequalities for fractional integrals of radial functions
Publicado: (2011) -
Fractional integrals on weighted hpspaces
por: Gatto 2, A.E., et al. -
Weighted inequalities for the fractional Laplacian and the existence of extremals
Publicado: (2018)