Binomial d-modules

We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary ℤd-graded binomial ideal I in ℂ[∂ 1 , . . ., ∂ n ] along with Euler operators defined by the grading and a parameter β ∈ ℂ d . We determine the parameters β for which these D-modules (i) are holonomic (equ...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickenstein, A., Felicia Matusevich, L., Miller, E.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00127094_v151_n3_p385_Dickenstein
Aporte de:
id todo:paper_00127094_v151_n3_p385_Dickenstein
record_format dspace
spelling todo:paper_00127094_v151_n3_p385_Dickenstein2023-10-03T14:10:23Z Binomial d-modules Dickenstein, A. Felicia Matusevich, L. Miller, E. We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary ℤd-graded binomial ideal I in ℂ[∂ 1 , . . ., ∂ n ] along with Euler operators defined by the grading and a parameter β ∈ ℂ d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded), (ii) decompose as direct sums indexed by the primary components of I, and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in ℂ d . In the special case of Horn hypergeometric D-modules, when I is a lattice-basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associatedA-hypergeometric functions. This study relies fundamentally on the explicit lattice-point description of the pimary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM]. © 2010 Applied Probability Trust. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00127094_v151_n3_p385_Dickenstein
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We study quotients of the Weyl algebra by left ideals whose generators consist of an arbitrary ℤd-graded binomial ideal I in ℂ[∂ 1 , . . ., ∂ n ] along with Euler operators defined by the grading and a parameter β ∈ ℂ d . We determine the parameters β for which these D-modules (i) are holonomic (equivalently, regular holonomic, when I is standard-graded), (ii) decompose as direct sums indexed by the primary components of I, and (iii) have holonomic rank greater than the rank for generic β. In each of these three cases, the parameters in question are precisely those outside of a certain explicitly described affine subspace arrangement in ℂ d . In the special case of Horn hypergeometric D-modules, when I is a lattice-basis ideal, we furthermore compute the generic holonomic rank combinatorially and write down a basis of solutions in terms of associatedA-hypergeometric functions. This study relies fundamentally on the explicit lattice-point description of the pimary components of an arbitrary binomial ideal in characteristic zero, which we derive in our companion article [DMM]. © 2010 Applied Probability Trust.
format JOUR
author Dickenstein, A.
Felicia Matusevich, L.
Miller, E.
spellingShingle Dickenstein, A.
Felicia Matusevich, L.
Miller, E.
Binomial d-modules
author_facet Dickenstein, A.
Felicia Matusevich, L.
Miller, E.
author_sort Dickenstein, A.
title Binomial d-modules
title_short Binomial d-modules
title_full Binomial d-modules
title_fullStr Binomial d-modules
title_full_unstemmed Binomial d-modules
title_sort binomial d-modules
url http://hdl.handle.net/20.500.12110/paper_00127094_v151_n3_p385_Dickenstein
work_keys_str_mv AT dickensteina binomialdmodules
AT feliciamatusevichl binomialdmodules
AT millere binomialdmodules
_version_ 1807322568762327040