The dependence of the first eigenvalue of the infinity laplacian with respect to the domain
In this paper we study the dependence of the first eigenvalue of the infinity Laplace with respect to the domain. We prove that this first eigenvalue is continuous under some weak convergence conditions which are fulfilled when a sequence of domains converges in Hausdorff distance. Moreover, it is L...
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00170895_v56_n2_p241_Navarro |
Aporte de: |
id |
todo:paper_00170895_v56_n2_p241_Navarro |
---|---|
record_format |
dspace |
spelling |
todo:paper_00170895_v56_n2_p241_Navarro2023-10-03T14:14:57Z The dependence of the first eigenvalue of the infinity laplacian with respect to the domain Navarro, J.C. Rossi, J.D. San Antolin, A. Saintier, N. In this paper we study the dependence of the first eigenvalue of the infinity Laplace with respect to the domain. We prove that this first eigenvalue is continuous under some weak convergence conditions which are fulfilled when a sequence of domains converges in Hausdorff distance. Moreover, it is Lipschitz continuous but not differentiable when we consider deformations obtained via a vector field. Our results are illustrated with simple examples. © Glasgow Mathematical Journal Trust 2013. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00170895_v56_n2_p241_Navarro |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
In this paper we study the dependence of the first eigenvalue of the infinity Laplace with respect to the domain. We prove that this first eigenvalue is continuous under some weak convergence conditions which are fulfilled when a sequence of domains converges in Hausdorff distance. Moreover, it is Lipschitz continuous but not differentiable when we consider deformations obtained via a vector field. Our results are illustrated with simple examples. © Glasgow Mathematical Journal Trust 2013. |
format |
JOUR |
author |
Navarro, J.C. Rossi, J.D. San Antolin, A. Saintier, N. |
spellingShingle |
Navarro, J.C. Rossi, J.D. San Antolin, A. Saintier, N. The dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
author_facet |
Navarro, J.C. Rossi, J.D. San Antolin, A. Saintier, N. |
author_sort |
Navarro, J.C. |
title |
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
title_short |
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
title_full |
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
title_fullStr |
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
title_full_unstemmed |
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
title_sort |
dependence of the first eigenvalue of the infinity laplacian with respect to the domain |
url |
http://hdl.handle.net/20.500.12110/paper_00170895_v56_n2_p241_Navarro |
work_keys_str_mv |
AT navarrojc thedependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT rossijd thedependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT sanantolina thedependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT saintiern thedependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT navarrojc dependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT rossijd dependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT sanantolina dependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain AT saintiern dependenceofthefirsteigenvalueoftheinfinitylaplacianwithrespecttothedomain |
_version_ |
1807315059843530752 |