The dependence of the first eigenvalue of the infinity laplacian with respect to the domain
In this paper we study the dependence of the first eigenvalue of the infinity Laplace with respect to the domain. We prove that this first eigenvalue is continuous under some weak convergence conditions which are fulfilled when a sequence of domains converges in Hausdorff distance. Moreover, it is L...
Autores principales: | Navarro, J.C., Rossi, J.D., San Antolin, A., Saintier, N. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00170895_v56_n2_p241_Navarro |
Aporte de: |
Ejemplares similares
-
The dependence of the first eigenvalue of the infinity laplacian with respect to the domain
por: Rossi, Julio Daniel
Publicado: (2014) -
On the first nontrivial eigenvalue of the ∞-laplacian with neumann boundary conditions
por: Rossi, J.D., et al. -
Tug-of-war games and the infinity laplacian with spatial dependence
por: Gómez, I., et al. -
Large solutions for the infinity Laplacian
por: Juutinen, P., et al. -
The limit as p → + ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
por: Rossi, J.D., et al.