Solutions to a stationary nonlinear Black-Scholes type equation
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, w...
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
Aporte de: |
id |
todo:paper_0022247X_v276_n1_p231_Amster |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v276_n1_p231_Amster2023-10-03T14:29:07Z Solutions to a stationary nonlinear Black-Scholes type equation Amster, P. Averbuj, C.G. Mariani, M.C. We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, we construct a solution by an iterative procedure. © 2002 Elsevier Science (USA). All rights reserved. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Averbuj, C.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, we construct a solution by an iterative procedure. © 2002 Elsevier Science (USA). All rights reserved. |
format |
JOUR |
author |
Amster, P. Averbuj, C.G. Mariani, M.C. |
spellingShingle |
Amster, P. Averbuj, C.G. Mariani, M.C. Solutions to a stationary nonlinear Black-Scholes type equation |
author_facet |
Amster, P. Averbuj, C.G. Mariani, M.C. |
author_sort |
Amster, P. |
title |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_short |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_full |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_fullStr |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_full_unstemmed |
Solutions to a stationary nonlinear Black-Scholes type equation |
title_sort |
solutions to a stationary nonlinear black-scholes type equation |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
work_keys_str_mv |
AT amsterp solutionstoastationarynonlinearblackscholestypeequation AT averbujcg solutionstoastationarynonlinearblackscholestypeequation AT marianimc solutionstoastationarynonlinearblackscholestypeequation |
_version_ |
1807323638877126656 |