Solutions to a stationary nonlinear Black-Scholes type equation
We study by topological methods a nonlinear differential equation generalizing the Black-Scholes formula for an option pricing model with stochastic volatility. We prove the existence of at least a solution of the stationary Dirichlet problem applying an upper and lower solutions method. Moreover, w...
Autores principales: | Amster, P., Averbuj, C.G., Mariani, M.C. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v276_n1_p231_Amster |
Aporte de: |
Ejemplares similares
-
Solutions to a stationary nonlinear Black-Scholes type equation
por: Amster, P., et al.
Publicado: (2002) -
Solutions to a stationary nonlinear Black-Scholes type equation
por: Amster, P., et al.
Publicado: (2002) -
Stationary solutions for two nonlinear Black-Scholes type equations
por: Amster, P., et al. -
Solutions to a stationary nonlinear Black-Scholes type equation
por: Amster, Pablo Gustavo, et al.
Publicado: (2002) -
Stationary solutions for two nonlinear Black-Scholes type equations
Publicado: (2003)