Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals
Let T ⊂ [a, b] be a time scale with a, b ∈ T. In this paper we study the asymptotic distribution of eigenvalues of the following linear problem - uΔ Δ = λ uσ, with mixed boundary conditions α u (a) + β uΔ (a) = 0 = γ u (ρ (b)) + δ uΔ (ρ (b)). It is known that there exists a sequence of simple eigenv...
Guardado en:
Autores principales: | Amster, P., De Nápoli, P., Pinasco, J.P. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v343_n1_p573_Amster |
Aporte de: |
Ejemplares similares
-
Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals
Publicado: (2008) -
Detailed asymptotic of eigenvalues on time scales
por: Amster, P., et al. -
Detailed asymptotic of eigenvalues on time scales
por: Amster, Pablo Gustavo, et al.
Publicado: (2009) -
An inequality for eigenvalues of quasilinear problems with monotonic weights
por: Castro, M.J., et al.
Publicado: (2010) -
An inequality for eigenvalues of quasilinear problems with monotonic weights
por: Castro, M.J., et al.