Refined asymptotics for eigenvalues on domains of infinite measure
In this work we study the asymptotic distribution of eigenvalues in one-dimensional open sets. The method of proof is rather elementary, based on the Dirichlet lattice points problem, which enable us to consider sets with infinite measure. Also, we derive some estimates for the spectral counting fun...
Guardado en:
Autores principales: | Bonder, J.F., Pinasco, J.P., Salort, A.M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v371_n1_p41_Bonder |
Aporte de: |
Ejemplares similares
-
Refined asymptotics for eigenvalues on domains of infinite measure
por: Bonder, J.F., et al.
Publicado: (2010) -
Refined asymptotics for eigenvalues on domains of infinite measure
por: Bonder, J.F., et al.
Publicado: (2010) -
Refined asymptotics for eigenvalues on domains of infinite measure
por: Pinasco, Juan Pablo, et al.
Publicado: (2010) -
Precise asymptotic of eigenvalues of resonant quasilinear systems
por: Bonder, J.F., et al.
Publicado: (2010) -
Precise asymptotic of eigenvalues of resonant quasilinear systems
por: Bonder, J.F., et al.