The log-Sobolev inequality with quadratic interactions
We assume one-site measures without a boundary e−ϕ(x)dx/Z that satisfies a log-Sobolev inequality. We prove that if these measures are perturbed with quadratic interactions, then the associated infinite dimensional Gibbs measure on the lattice always satisfies a log-Sobolev inequality. Furthermore,...
Guardado en:
Autor principal: | Papageorgiou, I. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00222488_v59_n8_p_Papageorgiou |
Aporte de: |
Ejemplares similares
-
The log-Sobolev inequality with quadratic interactions
Publicado: (2018) -
Aspects of Sobolev-type inequalities /
por: Saloff-Coste, L.
Publicado: (2002) -
Improved Poincaré inequalities in fractional Sobolev spaces
por: Drelichman, I., et al. -
Improved Poincaré inequalities in fractional Sobolev spaces
Publicado: (2018) -
The sharp affine L2 Sobolev trace inequality and variants
por: De Napoli, Pablo Luis, et al.
Publicado: (2018)