Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras

We describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n≥1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology group HH1(Ψn) is 2n-dimensional and we use this fact to calculate the fir...

Descripción completa

Detalles Bibliográficos
Autores principales: Beltran, J., Farinati, M., Reyes, E.G.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00224049_v222_n8_p2006_Beltran
Aporte de:
id todo:paper_00224049_v222_n8_p2006_Beltran
record_format dspace
spelling todo:paper_00224049_v222_n8_p2006_Beltran2023-10-03T14:32:45Z Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras Beltran, J. Farinati, M. Reyes, E.G. We describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n≥1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology group HH1(Ψn) is 2n-dimensional and we use this fact to calculate the first Lie (co)homology group HLie 1(Ψn) of Ψn equipped with the Lie bracket induced by its associative algebra structure. As an application, we use our calculations to provide examples of infinite-dimensional quadratic symplectic Lie algebras. © 2017 Elsevier B.V. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00224049_v222_n8_p2006_Beltran
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We describe the space of central extensions of the associative algebra Ψn of formal pseudo-differential symbols in n≥1 independent variables using Hochschild (co)homology groups: we prove that the first Hochschild (co)homology group HH1(Ψn) is 2n-dimensional and we use this fact to calculate the first Lie (co)homology group HLie 1(Ψn) of Ψn equipped with the Lie bracket induced by its associative algebra structure. As an application, we use our calculations to provide examples of infinite-dimensional quadratic symplectic Lie algebras. © 2017 Elsevier B.V.
format JOUR
author Beltran, J.
Farinati, M.
Reyes, E.G.
spellingShingle Beltran, J.
Farinati, M.
Reyes, E.G.
Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
author_facet Beltran, J.
Farinati, M.
Reyes, E.G.
author_sort Beltran, J.
title Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
title_short Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
title_full Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
title_fullStr Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
title_full_unstemmed Central extensions of the algebra of formal pseudo-differential symbols via Hochschild (co)homology and quadratic symplectic Lie algebras
title_sort central extensions of the algebra of formal pseudo-differential symbols via hochschild (co)homology and quadratic symplectic lie algebras
url http://hdl.handle.net/20.500.12110/paper_00224049_v222_n8_p2006_Beltran
work_keys_str_mv AT beltranj centralextensionsofthealgebraofformalpseudodifferentialsymbolsviahochschildcohomologyandquadraticsymplecticliealgebras
AT farinatim centralextensionsofthealgebraofformalpseudodifferentialsymbolsviahochschildcohomologyandquadraticsymplecticliealgebras
AT reyeseg centralextensionsofthealgebraofformalpseudodifferentialsymbolsviahochschildcohomologyandquadraticsymplecticliealgebras
_version_ 1807314647137648640