Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
We characterize the sets of norm one vectors x1,…,xk in a Hilbert space H such that there exists a k-linear symmetric form attaining its norm at (x1,…,xk). We prove that in the bilinear case, any two vectors satisfy this property. However, for k≥3 only collinear vectors satisfy this property in the...
Guardado en:
Autores principales: | Carando, D., Rodríguez, J.T. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00243795_v563_n_p178_Carando |
Aporte de: |
Ejemplares similares
-
Symmetric multilinear forms on Hilbert spaces: Where do they attain their norm?
Publicado: (2019) -
Natural symmetric tensor norms
por: Carando, D., et al.
Publicado: (2012) -
Natural symmetric tensor norms
por: Carando, D., et al. -
Natural symmetric tensor norms
por: Carando, D., et al.
Publicado: (2012) -
Natural symmetric tensor norms
por: Carando, Daniel German, et al.
Publicado: (2012)