Self-dual projective toric varieties
Let T be a torus over an algebraically closed field K of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X⊂P(V) is self-dual, in terms of the configuration of weights of V. © 2011 London Mathematical Society.
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00246107_v84_n2_p514_Bourel |
Aporte de: |
id |
todo:paper_00246107_v84_n2_p514_Bourel |
---|---|
record_format |
dspace |
spelling |
todo:paper_00246107_v84_n2_p514_Bourel2023-10-03T14:35:16Z Self-dual projective toric varieties Bourel, M. Dickenstein, A. Rittatore, A. Let T be a torus over an algebraically closed field K of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X⊂P(V) is self-dual, in terms of the configuration of weights of V. © 2011 London Mathematical Society. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00246107_v84_n2_p514_Bourel |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
Let T be a torus over an algebraically closed field K of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X⊂P(V) is self-dual, in terms of the configuration of weights of V. © 2011 London Mathematical Society. |
format |
JOUR |
author |
Bourel, M. Dickenstein, A. Rittatore, A. |
spellingShingle |
Bourel, M. Dickenstein, A. Rittatore, A. Self-dual projective toric varieties |
author_facet |
Bourel, M. Dickenstein, A. Rittatore, A. |
author_sort |
Bourel, M. |
title |
Self-dual projective toric varieties |
title_short |
Self-dual projective toric varieties |
title_full |
Self-dual projective toric varieties |
title_fullStr |
Self-dual projective toric varieties |
title_full_unstemmed |
Self-dual projective toric varieties |
title_sort |
self-dual projective toric varieties |
url |
http://hdl.handle.net/20.500.12110/paper_00246107_v84_n2_p514_Bourel |
work_keys_str_mv |
AT bourelm selfdualprojectivetoricvarieties AT dickensteina selfdualprojectivetoricvarieties AT rittatorea selfdualprojectivetoricvarieties |
_version_ |
1807323581039771648 |