Self-dual projective toric varieties

Let T be a torus over an algebraically closed field K of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X⊂P(V) is self-dual, in terms of the configuration of weights of V. © 2011 London Mathematical Society.

Detalles Bibliográficos
Autores principales: Bourel, M., Dickenstein, A., Rittatore, A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00246107_v84_n2_p514_Bourel
Aporte de:
id todo:paper_00246107_v84_n2_p514_Bourel
record_format dspace
spelling todo:paper_00246107_v84_n2_p514_Bourel2023-10-03T14:35:16Z Self-dual projective toric varieties Bourel, M. Dickenstein, A. Rittatore, A. Let T be a torus over an algebraically closed field K of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X⊂P(V) is self-dual, in terms of the configuration of weights of V. © 2011 London Mathematical Society. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00246107_v84_n2_p514_Bourel
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description Let T be a torus over an algebraically closed field K of characteristic 0, and consider a projective T-module P(V). We determine when a projective toric subvariety X⊂P(V) is self-dual, in terms of the configuration of weights of V. © 2011 London Mathematical Society.
format JOUR
author Bourel, M.
Dickenstein, A.
Rittatore, A.
spellingShingle Bourel, M.
Dickenstein, A.
Rittatore, A.
Self-dual projective toric varieties
author_facet Bourel, M.
Dickenstein, A.
Rittatore, A.
author_sort Bourel, M.
title Self-dual projective toric varieties
title_short Self-dual projective toric varieties
title_full Self-dual projective toric varieties
title_fullStr Self-dual projective toric varieties
title_full_unstemmed Self-dual projective toric varieties
title_sort self-dual projective toric varieties
url http://hdl.handle.net/20.500.12110/paper_00246107_v84_n2_p514_Bourel
work_keys_str_mv AT bourelm selfdualprojectivetoricvarieties
AT dickensteina selfdualprojectivetoricvarieties
AT rittatorea selfdualprojectivetoricvarieties
_version_ 1807323581039771648