Regularity theory and high order numerical methods for the (1D)-fractional Laplacian
This paper presents regularity results and associated high order numerical methods for one-dimensional fractional-Laplacian boundary-value problems. On the basis of a factorization of solutions as a product of a certain edge-singular weight ω times a "regular" unknown, a characterization o...
Guardado en:
Autores principales: | Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255718_v87_n312_p1821_Acosta |
Aporte de: |
Ejemplares similares
-
Regularity theory and high order numerical methods for the (1D)-fractional Laplacian
Publicado: (2018) -
A fractional Laplace equation: Regularity of solutions and finite element approximations
por: Acosta, G., et al. -
Eigenvalues homogenization for the fractional p-laplacian
por: Salort, Ariel Martín
Publicado: (2016) -
Eigenvalues homogenization for the fractional p-laplacian
por: Salort, A.M. -
A fractional Laplace equation: Regularity of solutions and finite element approximations
Publicado: (2017)