Lp-dimension free boundedness for Riesz transforms associated to Hermite functions
Riesz transforms associated to Hermite functions were introduced by S. Thangavelu, who proved that they are bounded operators on L p(ℝd), 1 < p < ∞. In this paper we give a different proof that allows us to show that the Lp-norms of these operators are bounded by a constant not dependi...
Guardado en:
Autores principales: | Harboure, E., De Rosa, L., Segovia, C., Torrea, J.L. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255831_v328_n4_p653_Harboure |
Aporte de: |
Ejemplares similares
-
Lp-dimension free boundedness for Riesz transforms associated to Hermite functions
por: Harboure, Eleonor, et al.
Publicado: (2004) -
L2 and lp boundedness of singular integrals on non necessarily normalized spaces of homogeneous type /
por: Macías, R.A
Publicado: (1988) -
Multipliers of Laplace transform type for Laguerre and Hermite expansions
por: De Nápoli, P.L., et al. -
Multipliers of Laplace transform type for Laguerre and Hermite expansions
por: De Napoli, Pablo Luis, et al.
Publicado: (2011) -
Boundedness of the Weyl fractional integral on one-sided weighted Lebesgue and Lipschitz spaces
por: Ombrosi, S., et al.