Centralisers of spaces of symmetric tensor products and applications

We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applicat...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyd, C., Lassalle, S.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd
Aporte de:
id todo:paper_00255874_v254_n3_p539_Boyd
record_format dspace
spelling todo:paper_00255874_v254_n3_p539_Boyd2023-10-03T14:36:23Z Centralisers of spaces of symmetric tensor products and applications Boyd, C. Lassalle, S. We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials.
format JOUR
author Boyd, C.
Lassalle, S.
spellingShingle Boyd, C.
Lassalle, S.
Centralisers of spaces of symmetric tensor products and applications
author_facet Boyd, C.
Lassalle, S.
author_sort Boyd, C.
title Centralisers of spaces of symmetric tensor products and applications
title_short Centralisers of spaces of symmetric tensor products and applications
title_full Centralisers of spaces of symmetric tensor products and applications
title_fullStr Centralisers of spaces of symmetric tensor products and applications
title_full_unstemmed Centralisers of spaces of symmetric tensor products and applications
title_sort centralisers of spaces of symmetric tensor products and applications
url http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd
work_keys_str_mv AT boydc centralisersofspacesofsymmetrictensorproductsandapplications
AT lassalles centralisersofspacesofsymmetrictensorproductsandapplications
_version_ 1807317261731495936