Centralisers of spaces of symmetric tensor products and applications
We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applicat...
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd |
Aporte de: |
id |
todo:paper_00255874_v254_n3_p539_Boyd |
---|---|
record_format |
dspace |
spelling |
todo:paper_00255874_v254_n3_p539_Boyd2023-10-03T14:36:23Z Centralisers of spaces of symmetric tensor products and applications Boyd, C. Lassalle, S. We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials. Fil:Lassalle, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We show that the centraliser of the space of n-fold symmetric injective tensors, n ≥ 2, on a real Banach space is trivial. With a geometric condition on the set of extreme points of its dual, the space of integral polynomials we obtain the same result for complex Banach spaces. We give some applications of this results to centralisers of spaces of homogeneous polynomials and complex Banach spaces. In addition, we derive a Banach-Stone Theorem for spaces of vector-valued approximable polynomials. |
format |
JOUR |
author |
Boyd, C. Lassalle, S. |
spellingShingle |
Boyd, C. Lassalle, S. Centralisers of spaces of symmetric tensor products and applications |
author_facet |
Boyd, C. Lassalle, S. |
author_sort |
Boyd, C. |
title |
Centralisers of spaces of symmetric tensor products and applications |
title_short |
Centralisers of spaces of symmetric tensor products and applications |
title_full |
Centralisers of spaces of symmetric tensor products and applications |
title_fullStr |
Centralisers of spaces of symmetric tensor products and applications |
title_full_unstemmed |
Centralisers of spaces of symmetric tensor products and applications |
title_sort |
centralisers of spaces of symmetric tensor products and applications |
url |
http://hdl.handle.net/20.500.12110/paper_00255874_v254_n3_p539_Boyd |
work_keys_str_mv |
AT boydc centralisersofspacesofsymmetrictensorproductsandapplications AT lassalles centralisersofspacesofsymmetrictensorproductsandapplications |
_version_ |
1807317261731495936 |