Recent theoretical results on coronal heating
The scenario of magnetohydrodynamic turbulence in connection with coronal active regions has been actively investigated in recent years. According to this viewpoint, a turbulent regime is driven by footpoint motions and the incoming energy is efficiently transferred to small scales due to a direct e...
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00380938_v195_n2_p299_Gomez |
Aporte de: |
id |
todo:paper_00380938_v195_n2_p299_Gomez |
---|---|
record_format |
dspace |
spelling |
todo:paper_00380938_v195_n2_p299_Gomez2023-10-03T14:48:30Z Recent theoretical results on coronal heating Gomez, D.O. Dmitruk, P.A. Milano, L.J. The scenario of magnetohydrodynamic turbulence in connection with coronal active regions has been actively investigated in recent years. According to this viewpoint, a turbulent regime is driven by footpoint motions and the incoming energy is efficiently transferred to small scales due to a direct energy cascade. The development of fine scales to enhance the dissipation of either waves or DC currents is therefore a natural outcome of turbulent models. Numerical integrations of the reduced magnetohydrodynamic equations are performed to simulate the dynamics of coronal loops driven at their bases by footpoint motions. These simulations show that a stationary turbulent regime is reached after a few photospheric times, displaying a broadband power spectrum and a dissipation rate consistent with the energy loss rates of the plasma confined in these loops. Also, the functional dependence of the stationary heating rate with the physical parameters of the problem is obtained, which might be useful for an observational test of this theoretical framework. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00380938_v195_n2_p299_Gomez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
The scenario of magnetohydrodynamic turbulence in connection with coronal active regions has been actively investigated in recent years. According to this viewpoint, a turbulent regime is driven by footpoint motions and the incoming energy is efficiently transferred to small scales due to a direct energy cascade. The development of fine scales to enhance the dissipation of either waves or DC currents is therefore a natural outcome of turbulent models. Numerical integrations of the reduced magnetohydrodynamic equations are performed to simulate the dynamics of coronal loops driven at their bases by footpoint motions. These simulations show that a stationary turbulent regime is reached after a few photospheric times, displaying a broadband power spectrum and a dissipation rate consistent with the energy loss rates of the plasma confined in these loops. Also, the functional dependence of the stationary heating rate with the physical parameters of the problem is obtained, which might be useful for an observational test of this theoretical framework. |
format |
JOUR |
author |
Gomez, D.O. Dmitruk, P.A. Milano, L.J. |
spellingShingle |
Gomez, D.O. Dmitruk, P.A. Milano, L.J. Recent theoretical results on coronal heating |
author_facet |
Gomez, D.O. Dmitruk, P.A. Milano, L.J. |
author_sort |
Gomez, D.O. |
title |
Recent theoretical results on coronal heating |
title_short |
Recent theoretical results on coronal heating |
title_full |
Recent theoretical results on coronal heating |
title_fullStr |
Recent theoretical results on coronal heating |
title_full_unstemmed |
Recent theoretical results on coronal heating |
title_sort |
recent theoretical results on coronal heating |
url |
http://hdl.handle.net/20.500.12110/paper_00380938_v195_n2_p299_Gomez |
work_keys_str_mv |
AT gomezdo recenttheoreticalresultsoncoronalheating AT dmitrukpa recenttheoreticalresultsoncoronalheating AT milanolj recenttheoreticalresultsoncoronalheating |
_version_ |
1807314888863776768 |