Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined...
Autor principal: | |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer |
Aporte de: |
id |
todo:paper_00418994_v103_n_p51_Keilhauer |
---|---|
record_format |
dspace |
spelling |
todo:paper_00418994_v103_n_p51_Keilhauer2023-10-03T14:51:22Z Tensor fields of type (0,2) on linear frame bundles and cotangent bundles Keilhauer, G.G.R. To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés. |
format |
JOUR |
author |
Keilhauer, G.G.R. |
spellingShingle |
Keilhauer, G.G.R. Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
author_facet |
Keilhauer, G.G.R. |
author_sort |
Keilhauer, G.G.R. |
title |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_short |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_full |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_fullStr |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_full_unstemmed |
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
title_sort |
tensor fields of type (0,2) on linear frame bundles and cotangent bundles |
url |
http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer |
work_keys_str_mv |
AT keilhauerggr tensorfieldsoftype02onlinearframebundlesandcotangentbundles |
_version_ |
1807317765482086400 |