Tensor fields of type (0,2) on linear frame bundles and cotangent bundles

To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined...

Descripción completa

Detalles Bibliográficos
Autor principal: Keilhauer, G.G.R.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer
Aporte de:
id todo:paper_00418994_v103_n_p51_Keilhauer
record_format dspace
spelling todo:paper_00418994_v103_n_p51_Keilhauer2023-10-03T14:51:22Z Tensor fields of type (0,2) on linear frame bundles and cotangent bundles Keilhauer, G.G.R. To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description To any (0,2)-tensor field on the linear frame bundle, respectively on the cotangent bundle, we associate a global matrix function when a linear connection or a Riemannian metric on the base manifold is given. Based on this fact, natural (0,2)-tensor fields on frame and cotangent bundles are defined and characterized by means of well known algebraic results. In the symmetric case, our classification agrees with the one given by Sekizawa and Kowalski-Sekizawa. However, we do not make use of the theory of differential invariants. © Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.
format JOUR
author Keilhauer, G.G.R.
spellingShingle Keilhauer, G.G.R.
Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
author_facet Keilhauer, G.G.R.
author_sort Keilhauer, G.G.R.
title Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_short Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_full Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_fullStr Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_full_unstemmed Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
title_sort tensor fields of type (0,2) on linear frame bundles and cotangent bundles
url http://hdl.handle.net/20.500.12110/paper_00418994_v103_n_p51_Keilhauer
work_keys_str_mv AT keilhauerggr tensorfieldsoftype02onlinearframebundlesandcotangentbundles
_version_ 1807317765482086400