Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space
We prove the K-theoretic Farrell-Jones conjecture for groups with the Haagerup approximation property and coefficient rings and C ∗ C^{∗} -algebras which are stable with respect to compact operators. We use this and Higson-Kasparov's result that the Baum-Connes conjecture holds for such a group...
Guardado en:
Autores principales: | Cortiñas, G., Tartaglia, G. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00754102_v2018_n734_p265_Cortinas |
Aporte de: |
Ejemplares similares
-
Compact operators and algebraic K-theory for groups which act properly and isometrically on Hilbert space
por: Cortiñas, G., et al. -
Compact operators and algebraic K-theory for groups which act properly and isometrically on Hilbert space
por: Cortiñas, Guillermo Horacio, et al.
Publicado: (2015) -
Compact operators and algebraic K -theory for groups which act properly and isometrically on Hilbert space
Publicado: (2018) -
Linear operators in Hilbert spaces /
por: Weidmann, Joachim
Publicado: (1980) -
Operator colligations in Hilbert spaces
por: Livshits, Mikhail S.
Publicado: (1979)