Optimization and Empirical Modeling of HG-ICP-AES Analytical Technique through Artificial Neural Networks
An artificial neural network technique has been applied to the optimization of a hydride generation-inductively coupled plasma-atomic emission spectrometry (HG-ICP-AES) coupling for the determination of Ge at trace levels. The back propagation of errors net architecture was used. Experimental parame...
Guardado en:
Autores principales: | Magallanes, J.F., Smichowski, P., Marrero, J. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00952338_v41_n3_p824_Magallanes |
Aporte de: |
Ejemplares similares
-
Optimization and Empirical Modeling of HG-ICP-AES Analytical Technique through Artificial Neural Networks
Publicado: (2001) -
Implementación paralela del algoritmo backpropagation en un cluster de computadoras
por: Alfonso, Marcelo, et al.
Publicado: (2006) -
Practical guide to ICP-MS : a tutorial for beginners /
por: Thomas, Robert, 1949-
Publicado: (2013) -
A parallel approach for backpropagation learning of neural networks
por: Crespo, María Liz, et al.
Publicado: (1997) -
Parallel backpropagation neural networks forTask allocation by means of PVM
por: Crespo, María Liz, et al.
Publicado: (1998)