Improving bias-robustness of regression estimates through projections

We define a robust procedure to "correct" a regression estimate β̂0 along the directions in predictor space where the fit is worse. When β̂0 is the least median of squares estimate, the "corrected estimate" has a smaller maximum asymptotic bias under contamination, and a much bet...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maronna, R.A., Barrera, M.S., Yohai, V.J.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01677152_v47_n2_p149_Maronna
Aporte de:
Descripción
Sumario:We define a robust procedure to "correct" a regression estimate β̂0 along the directions in predictor space where the fit is worse. When β̂0 is the least median of squares estimate, the "corrected estimate" has a smaller maximum asymptotic bias under contamination, and a much better finite-sample behavior than β̂0. © 2000 Elsevier Science B.V.