Improving bias-robustness of regression estimates through projections
We define a robust procedure to "correct" a regression estimate β̂0 along the directions in predictor space where the fit is worse. When β̂0 is the least median of squares estimate, the "corrected estimate" has a smaller maximum asymptotic bias under contamination, and a much bet...
Guardado en:
Autores principales: | Maronna, R.A., Barrera, M.S., Yohai, V.J. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01677152_v47_n2_p149_Maronna |
Aporte de: |
Ejemplares similares
-
Improving bias-robustness of regression estimates through projections
Publicado: (2000) -
The maximum bias of robust covariances
por: Yohai, V.J., et al. -
Robust and sparse estimators for linear regression models
por: Smucler, E., et al. -
A class of robust and fully efficient regression estimators
por: Gervini, D., et al. -
Robust estimation for linear regression with asymmetric errors
por: Bianco, A.M., et al.