A numerical algorithm for zero counting. III: Randomization and condition

In a recent paper (Cucker et al., 2008 [8]) we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability m...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cucker, F., Krick, T., Malajovich, G., Wschebor, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01968858_v48_n1_p215_Cucker
Aporte de:
Descripción
Sumario:In a recent paper (Cucker et al., 2008 [8]) we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability measure on the space of polynomial systems and give bounds for both the tail P{κ(f)>a} and the expected value E(logκ(f)). © 2011 Elsevier Inc. All rights reserved.