A numerical algorithm for zero counting. III: Randomization and condition
In a recent paper (Cucker et al., 2008 [8]) we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability m...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_01968858_v48_n1_p215_Cucker |
Aporte de: |
Sumario: | In a recent paper (Cucker et al., 2008 [8]) we analyzed a numerical algorithm for computing the number of real zeros of a polynomial system. The analysis relied on a condition number κ(f) for the input system f. In this paper we look at κ(f) as a random variable derived from imposing a probability measure on the space of polynomial systems and give bounds for both the tail P{κ(f)>a} and the expected value E(logκ(f)). © 2011 Elsevier Inc. All rights reserved. |
---|